边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中, AB边交DF于点M,BC边交DG于点N.(1)求边DA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;(3)如图3,设△MBN的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.
如图,一艘轮船离开 A 港沿着东北方向直线航行 60 2 海里到达 B 处,然后改变航向,向正东方向航行20海里到达 C 处,求 AC 的距离.
如图,某大学农学院的学生为了解试验田杂交水稻秧苗的长势,从中随机抽取样本对苗高进行了测量,根据统计结果(数据四舍五入取整),绘制统计图.
(1)本次抽取的样本水稻秧苗为 株;
(2)求出样本中苗高为 17 cm 的秧苗的株数,并完成折线统计图;
(3)根据统计数据,若苗高大于或等于 15 cm 视为优良秧苗,请你估算该试验田90000株水稻秧苗中达到优良等级的株数.
解不等式组: 2 x + 5 > 5 x + 2 ① 3 x - 1 < 4 x② .
计算: 4 + ( - 1 ) 0 + | π - 2 | - 3 tan 30 ° .
已知在 ΔABC 中, O 为 BC 边的中点,连接 AO ,将 ΔAOC 绕点 O 顺时针方向旋转(旋转角为钝角),得到 ΔEOF ,连接 AE , CF .
(1)如图1,当 ∠ BAC = 90 ° 且 AB = AC 时,则 AE 与 CF 满足的数量关系是 ;
(2)如图2,当 ∠ BAC = 90 ° 且 AB ≠ AC 时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.
(3)如图3,延长 AO 到点 D ,使 OD = OA ,连接 DE ,当 AO = CF = 5 , BC = 6 时,求 DE 的长.