某广告公司设计一个凸八边形的商标,它的中间是一个正方形,外面是四个腰长为,顶角为的等腰三角形.(1)若角时,求该八边形的面积; (2)写出的取值范围,当取何值时该八边形的面积最大,并求出最大面积.
已知函数R).(1)若 ,求曲线 在点 处的的切线方程;(2)若 对任意 恒成立,求实数a的取值范围.
某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式. (2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
(1)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(2)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.
已知数列 {an} 是首项为 a1=1 的等差数列,其前n项和为Sn,数列 {bn} 是首项 b1=2 的等比数列,且 b2S2=16,b1b3=b4.(1)求数列 {an},{bn} 的通项公式;(2)若数列 {cn} 满足 ,求数列 {cn} 的前n项和 Tn.
如图,在三棱锥中,,,,点在平面内的射影在上。(1)求直线与平面所成的角的大小;(2)求二面角的大小。
设函数.(1)求的单调递增区间;(2)已知△ABC中,角A,B,C的对边分别为a,b,c.若,,求a的最小值.