设椭圆C1和抛物线C2的焦点均在轴上,C1的中心和C2的顶点均为原点,从每条曲线上各取两点,将其坐标记录于下表中:
(1)求曲线C1,C2的标准方程;(2)设直线与椭圆C1交于不同两点M、N,且。请问是否存在直线过抛物线C2的焦点F?若存在,求出直线的方程;若不存在,请说明理由.
(本小题满分10分)某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了若干名学生的体检表,并得到如下直方图: (Ⅰ)若直方图中前三组的频率成等比数列,后四组的频率成等差数列,试估计全年级视力在5.0以下的人数; (Ⅱ)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系? 附:
(满分10分)复数(), (Ⅰ)若,求; (Ⅱ)若在复平面内复数对应的点在第一象限,求的范围.
(本小题满分13分)已知等差数列的公差它的前项和为,若且成等比数列. (1)求数列的通项公式; (2)设数列的前项和为,求证:
(本小题满分13分)设△ABC的内角A、B、C的对边长分别为a、b、c,设S为△ABC的面积,满足. (Ⅰ)求B; (Ⅱ)若,设,,求函数的解析式和最大值.
(本题10分)如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。 求证:(1)PA∥平面BDE (2)平面PAC平面BDE