设椭圆C1和抛物线C2的焦点均在轴上,C1的中心和C2的顶点均为原点,从每条曲线上各取两点,将其坐标记录于下表中:
(1)求曲线C1,C2的标准方程;(2)设直线与椭圆C1交于不同两点M、N,且。请问是否存在直线过抛物线C2的焦点F?若存在,求出直线的方程;若不存在,请说明理由.
已知三棱锥中,,,,为上一点,,分别为的中点. (1)证明:; (2)求与平面所成角的大小.
三人独立破译同一份密码.已知三人各自破译出密码的概率分别 为且他们是否破译出密码互不影响. (1)求恰有二人破译出密码的概率; (2)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.
已知圆C的圆心C(-1,2),且圆C经过原点。 (1)求圆C的方程 (2)过原点作圆C的切线,求切线的方程。 (3)过点的直线被圆C截得的弦长为,求直线的方程。
设函数. (1)求在上的值域. (2)设A,B,C为ABC的三个内角,若角C满足且边,求角.
函数的定义域关于原点对称,但不包括数0,对定义域中的任意实数,在定义域中存在使,,且满足以下3个条件。 (1)是定义域中的数,,则 (2),(是一个正的常数) (3)当时,。 证明:(1)是奇函数; (2)是周期函数,并求出其周期; (3)在内为减函数。