在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1a>b>0,e=23,且椭圆C上的点到点Q0,2的距离的最大值为3. (1)求椭圆C的方程; (2)在椭圆C上,是否存在点Mm,n,使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.
设函数,其中 (1)当时,判断函数在定义域上的单调性; (2)求的极值点; (3)证明对任意的正整数,不等式都成立。
已知数列的前n项和为,且。 (1)证明:数列是等比数列; (2)若数列满足,且,求数列的通项公式。
已知函数。 (1)求函数的最小正周期及在区间上的最大值和最小值; (2)若,,求的值。
设函数,,其中,a、b为常数,已知曲线在点(2,0)处有相同的切线。 (1)求a、b的值,并写出切线的方程; (2)求函数单调区间与极值。
在直三棱柱中,为等腰直角三角形,,且,E、F分别为、BC的中点。 (1)求证:; (2)求二面角的余弦值。