在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1a>b>0,e=23,且椭圆C上的点到点Q0,2的距离的最大值为3. (1)求椭圆C的方程; (2)在椭圆C上,是否存在点Mm,n,使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.
如图,一条笔直的小路CA通向河边的一座凉亭A,小路与河边成角(),在凉亭北偏东45方向cm处的B处有一颗千年古树。现准备从小路的某点P处开挖新修一条直路PD经过古树通向河边,两条路与河边围成的区域种上草坪。当开挖点P选在距凉亭多远处能使草坪占地面积最小?
在梯形ABCD中AB∥CD,AD=DC=CB=,,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=.(1)求证:BC⊥平面ACFE;(2)求EC与平面BEF所成角的正弦值.
已知直线,,,……,(其中),当时,直线与间的距离为n.(1)求;(2)求直线与直线及x轴、y轴围成图形的面积.
的周长为,且.(1)求边的长;(2)若的面积为,求角的度数.
设椭圆的左、右焦点分别为F1与F2,直线过椭圆的一个焦点F2且与椭圆交于P、Q两点,若的周长为。(1)求椭圆C的方程;(2)设椭圆C经过伸缩变换变成曲线,直线与曲线相切且与椭圆C交于不同的两点A、B,若,求面积的取值范围。(O为坐标原点)