设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=﹣b,其中常数a,b∈R.(1)求曲线y=f(x)在点(1,f(1))处的切线方程.(2)设g(x)=f′(x)e﹣x.求函数g(x)的极值.
已知椭圆经过点,一个焦点为.(1)求椭圆的方程;(2)若直线与轴交于点,与椭圆交于两点,线段的垂直平分线与轴交于点,求的取值范围.
设函数,,,记.(1)求曲线在处的切线方程;(2)求函数的单调区间;(3)当时,若函数没有零点,求的取值范围.
在四棱柱中,底面,底面为菱形,为与交点,已知,.(1)求证:平面;(2)求证:∥平面;(3)设点在内(含边界),且,说明满足条件的点的轨迹,并求的最小值.
某单位从一所学校招收某类特殊人才.对位已经选拔入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表:
例如表中运动协调能力良好且逻辑思维能力一般的学生是人.由于部分数据丢失,只知道从这位参加测试的学生中随机抽取一位,抽到逻辑思维能力优秀的学生的概率为.(1)求,的值;(2)从运动协调能力为优秀的学生中任意抽取位,求其中至少有一位逻辑思维能力优秀的学生的概率.
已知函数.(1)求的值及函数的单调递增区间;(2)求函数在区间上的最大值和最小值.