如图,把边长为10的正六边形纸板剪去相同的六个角,做成一个底面为正六边形的无盖六棱柱盒子,设其高为h,体积为V(不计接缝).(1)求出体积V与高h的函数关系式并指出其定义域;(2)问当为多少时,体积V最大?最大值是多少?
(本小题满分10分)(注意:在试题卷上作答无效)的三个内角A,B,C所对的边分别为a,b,c, 向量且(Ⅰ)求的大小;(Ⅱ)现给出下列四个条件:①②③④.试从中再选择两个条件以确定,求出你所确定的的面积.
(本小题12分)已知F1,F2是椭圆的左、右焦点,点P(-1,)在椭圆上,线段PF2与轴的交点满足.(1)求椭圆的标准方程;(2)过F1作不与轴重合的直线,与圆相交于A、B.并与椭圆相交于C、D.当,且时,求△F2CD的面积S的取值范围.
(本小题12分)已知函数的图像如图所示.(1)求的值;(2)若函数在处的切线方程为,求函数的解析式;(3)若=5,方程有三个不同的根,求实数的取值范围。
(本小题12分)如图,四棱锥中,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形,为的中点.(1)求与底面所成角的大小;(2)求证:平面;(3)求二面角的余弦值.
已知各项均为正数的数列满足其中n=1,2,3,….(1)求的值;(2)求证:;