如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1,且E是BC中点.(1)求证:A1B∥平面AEC1.(2)求证:B1C⊥平面AEC1.
设椭圆为正整数,为常数.曲线在点处的切线方程为.(Ⅰ)求函数的最大值;(Ⅱ)证明:.
已知椭圆上的任意一点到它两个焦点的距离之和为,且它的焦距为2.(Ⅰ)求椭圆的方程;(Ⅱ)已知直线与椭圆交于不同两点,且线段的中点不在圆内,求实数的取值范围.
学校游园活动有这样一个游戏节目,甲箱子里装有3个白球、2个黑球;乙箱子里装有1个白球、2个黑球。这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(Ⅰ)求在一次游戏中:①摸出3个白球的概率;②获奖的概率;(Ⅱ)求在两次游戏中获奖次数的分布列及数学期望.
如图,直三棱柱中,,,是棱的中点.(Ⅰ)证明:;(Ⅱ)求二面角的余弦值。
已知函数.(Ⅰ)求的最小正周期;(Ⅱ)记得内角的对应边为,若求的值.