(14分)已知.(1)求的单调区间和极值;(2)是否存在,使得在的切线相同?若存在,求出及在处的切线;若不存在,请说明理由;(3)若不等式在恒成立,求的取值范围.
如图,为半圆,为半圆直径,为半圆圆心,且,为线段的中点,已知,曲线过点,动点在曲线上运动且保持的值不变.(I)建立适当的平面直角坐标系,求曲线的方程;(II)过点的直线与曲线交于两点,与所在直线交于点,,证明:为定值.
如图,是圆的直径,点在圆上,,交于点,平面,,.(1)证明:;(2)求平面与平面所成的锐二面角的余弦值.
按照新课程的要求, 高中学生在每学期都要至少参加一次社会实践活动(以下简称活动). 该校高2010级一班50名学生在上学期参加活动的次数统计如图所示.(I)求该班学生参加活动的人均次数;(II)从该班中任意选两名学生,求他们参加活动次数恰好相等的概率.(III)从该班中任选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及数学期望.
已知各项都不相等的等差数列的前六项和为60,且 的等比中项. (I)求数列的通项公式;(II)若数列的前n项和.
已知函数的导函数是,在处取得极值,且.(Ⅰ)求的极大值和极小值;(Ⅱ)记在闭区间上的最大值为,若对任意的总有成立,求的取值范围;(Ⅲ)设是曲线上的任意一点.当时,求直线OM斜率的最小值,据此判断与的大小关系,并说明理由.