“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“十一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数是多少? (2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率多少?
(本题5分)为了构建城市立体道路网络,决定修建一条轻轨铁路,为了使工程提前6个月完成,需将原定的工作效率提高25%.原计划完成这项工程需要多少个月?
(本题5分)如图所示,已知BD⊥CD于D,EF⊥CD于F,,,其中为锐角,求证:。
(本题7分)如图,已知A (4,a),B (﹣2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的交点.(1)求反比例函数和一次函数的解祈式;(2)求△A0B的面积.
(本题13分)已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,求证:①BD⊥CF.②CF=BC﹣CD.(2)如图2,当点D在线段BC的延长线上时,其它条件不变,请直接写出CF、BC、CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:①请直接写出CF、BC、CD三条线段之间的关系.②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.
(本题12分)如图,直线:分别与轴、轴交于A、B两点,点C线段AB上,作CD⊥x轴于D, CD="2OD," 点E线段OB上,且AE=BE; (1)填空:点C的坐标为( , );点E的坐标为( , ); (2)直线过点E,且将△AOB分成面积比为1:2的两部分,求直线的表达式; (3)点P在x轴上运动, ①当PC+PE取最小值时,求点P的坐标及PC+PE的最小值; ②当PC-PE取最大值时,求点P的坐标及PC-PE的最大值;