已知满足,, (1)求 ; (2)求证:是等比数列;并求出的表达式.
在中,角所对的边为,且满足 (1)求角的值; (2)若且,求的取值范围.
已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为(为参数). (Ⅰ)写出直线的普通方程与曲线的直角坐标方程; (Ⅱ)设曲线经过伸缩变换得到曲线,设为曲线上任一点,求的最小值,并求相应点的坐标.
设 (Ⅰ)当,解不等式; (Ⅱ)当时,若,使得不等式成立,求实数的取值范围.
如图,在正△ABC中,点D,E分别在边AC, AB上,且AD=AC,AE=AB,BD,CE相交于点F. (Ⅰ)求证:A,E,F,D四点共圆; (Ⅱ)若正△ABC的边长为2,求A,E,F,D所在圆的半径.
设,. (Ⅰ)当时,求曲线在处的切线的方程; (Ⅱ)如果存在,使得成立,求满足上述条件的最大整数; (Ⅲ)如果对任意的,都有成立,求实数的取值范围.