已知数列的前项和为,且满足:, N*,.(1)求数列的通项公式; (2)若存在 N*,使得,,成等差数列,试判断:对于任意的N*,且,,,是否成等差数列,并证明你的结论.
已知⊙M:轴上的动点,QA,QB分别切⊙M于A,B两点,(1)如果,求直线MQ的方程;(2)求动弦AB的中点P的轨迹方程.
若直线mx+y+2=0与线段AB有交点,其中A(-2, 3),B(3,2),求实数m的取值范围。
给定抛物线C:F是C的焦点,过点F的直线与C相交于A、B两点. (Ⅰ)设的斜率为1,求夹角的大小; (Ⅱ)设,求在轴上截距的变化范围.
如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=600,PA=AC=a,PB=PD=,点E在PD上,且PE:ED=2:1.(1)证明PA⊥平面ABCD;(2)求以AC为棱,EAC与DAC为面的二面角的大小;(3)在棱PC上是否存在一点F,使BF//平面AEC?证明你的结论.
在三棱锥S—ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点.(Ⅰ)证明:AC⊥SB;(Ⅱ)求二面角N—CM—B的大小;(Ⅲ)求点B到平面CMN的距离.