(本小题满分14分)已知数列的一个极值点。(1)证明:数列是等比数列;(II)求数列的通项公式;(III)设,求证:
(理科)已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为4。(Ⅰ)求椭圆的方程;(Ⅱ)直线过点P(0,2)且与椭圆相交于A、B两点,当ΔAOB面积取得最大值时,求直线l的方程。
(文科)
20090423
已知椭圆:的右顶点为,过的焦点且垂直长轴的弦长为.
(理科)如图,直线与椭圆交于A、B两点,记的面积为。(Ⅰ)求在,的条件下,的最大值;(Ⅱ)当时,求直线AB的方程。
(理科)已知椭圆C:(a>b>0)的离心率为短轴一个端点到右焦点的距离为。(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值。
(文科)已知△OFQ的面积为,=m. (1)设,求∠OFQ正切值的取值范围; (2)设以O为中心,F为焦点的双曲线经过点Q(如图), ,当 取得最小值时,求此双曲线的方程.