正方体棱长为1,以为坐标原点,以直线为横轴,直线为纵轴,直线为竖轴建立空间直角坐标系,如图. 为的重心,于.(I)求点的坐标.(II)求直线与平面所成的角的大小.
几何证明选讲如图:已知圆上的弧=,过C点的圆的切线与BA的延长线交于E点证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE×CD.
如图:是⊙的直径,垂直于⊙所在的平面,PA="AC," 是圆周上不同于的任意一点,(1) 求证:平面。(2) 求二面角 P-BC-A 的大小。
在等差数列中,,前项和为,等比数列各项均为正数,,且,的公比.(1)求与;(2)求.
已知直线经过点,倾斜角是①求直线的参数方程②求直线与直线的交点与点的距离③在圆:上找一点使点到直线的距离最小,并求其最小值。
交通管理部门为了优化某路段的交通状况,经过对该路段的长期观测发现:在交通繁忙的时段内,该路段内汽车的车流量(千辆/时)与汽车的平均速度(千米/时)之间的函数关系为 ①求在该路段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?(精确到千辆/时)②若要求在该时段内车流量超过千辆/时,则汽车的平均速度应限定在什么范围内?