(本小题满分13分)已知点,直线:,为平面上的动点,过点作直线的垂线,垂足为,且.(1)求动点的轨迹的方程;(2)已知点A(m,2)在曲线C上,过点A作曲线C的两条弦AD,AE,且AD,AE的斜率k1、k2满足,试推断:动直线DE是否过定点?证明你的结论。
(本题12分)已知分别为三个内角的对边,,(1)求;(2)若,的面积为;求.
(本小题15分)设抛物线和点,.斜率为的直线与抛物线相交不同的两个点.若点恰好为的中点. (1)求抛物线的方程, (2) 抛物线上是否存在异于的点,使得经过点的圆和抛物线在处有相同的切线.若存在,求出点的坐标;若不存在,请说明理由.
(本小题15分)已知函数. (1)当时,求的单调递增区间; (2)是否存在,使得对任意的,都有恒成立.若存在,求出的取值范围; 若不存在,请说明理由.
(本小题14分)已知函数. 设关于x的不等式的解集为且方程的两实根为. (1)若,求的关系式; (2)若,求证:.
(本小题14分)设各项为正的数列的前项和为 且满足: (1)求 (2)若,求