已知数列{an}的前n项和Sn=-an-n-1+2(n∈N*),数列{bn}满足bn=2nan.(1)求证数列{bn}是等差数列,并求数列{an}的通项公式.(2)设数列的前n项和为Tn,证明:n∈N*且n≥3时,Tn>.(3)设数列{cn}满足an(cn-3n)=(-1)n-1λn(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意n∈N*,都有cn+1>cn.
如右图(1)所示,定义在区间上的函数,如果满 足:对,常数A,都有成立,则称函数 在区间上有下界,其中称为函数的下界. (提示:图(1)、(2)中的常数、可以是正数,也可以是负数或零)(Ⅰ)试判断函数在上是否有下界?并说明理由;(Ⅱ)又如具有右图(2)特征的函数称为在区间上有上界. 请你类比函数有下界的定义,给出函数在区间上有上界的定义,并判断(Ⅰ)中的函数在上是否有上界?并说明理由; (Ⅲ)若函数在区间上既有上界又有下界,则称函数在区间上有界,函数叫做有界函数.试探究函数 (是常数)是否是(、是常数)上的有界函数?
已知:三次函数,在上单调增,在(-1,2)上单调减,当且仅当时,
20070328
(1)求函数f (x)的解析式; (2)若函数,求的单调区间.
在△ABC中,角A、B、C的对边分别为a、b、c,若(1)求证:A=B;(2)求边长c的值;(3)若求△ABC的面积.
已知函数 (I)求函数的最小正周期;(II)求函数的单调增区间。
等差数列中,,前项和为,等比数列各项均为正数,,且,的公比(1)求与;(2)证明: