某种产品的广告费支出x(单位:百万元)与销售额y(单位:百万元)之间有如下对应数据:
(1)画出散点图;(2)求y关于x的线性回归方程. 可能用到公式
已知,其中e为自然对数的底数.(1)若是增函数,求实数的取值范围;(2)当时,求函数上的最小值;(3)求证:.
已知定点,过点F且与直线相切的动圆圆心为点M,记点M的轨迹为曲线E.(1)求曲线E的方程;(2)若点A的坐标为,与曲线E相交于B,C两点,直线AB,AC分别交直线于点S,T.试判断以线段ST为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.
已知函数为自然对数的底数).(1)求曲线在处的切线方程;(2)若是的一个极值点,且点,满足条件:.(ⅰ)求的值;(ⅱ)求证:点,,是三个不同的点,且构成直角三角形.
设向量,定义一种向量积.已知向量,,点为的图象上的动点,点为的图象上的动点,且满足(其中为坐标原点).(1)请用表示; (2)求的表达式并求它的周期;(3)把函数图象上各点的横坐标缩小为原来的倍(纵坐标不变),得到函数的图象.设函数,试讨论函数在区间内的零点个数.
(已知抛物线()的准线与轴交于点.(1)求抛物线的方程,并写出焦点坐标;(2)是否存在过焦点的直线(直线与抛物线交于点,),使得三角形的面积?若存在,请求出直线的方程;若不存在,请说明理由.