PC如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=7,PA=3,∠ABC=120°,G为线段PC上的点. (Ⅰ)证明:BD⊥平面PAC; (Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值; (Ⅲ)若G满足PC⊥面BGD,求PGGC的值.
已知:,求证: (Ⅰ). (Ⅱ).
已知二次函数的图象经过坐标原点,其导函数为,数列的首项,点均在函数的图象上. (Ⅰ)求证是公比为2的等比数列. (Ⅱ)记bn=,求数列的前项和.
如图,是抛物线的焦点,过轴上的动点作直线的垂线. (Ⅰ)求证:直线与抛物线相切; (Ⅱ)设直线与抛物线相切于点,过点作直线的垂线,垂足为,求线段的长度以及动点的轨迹方程.
如图,在棱长为1的正方体中,、、分别是棱、、的中点. (Ⅰ)求证:; (Ⅱ)求点到平面的距离; (Ⅲ)求二面角的大小.
已知a、b、c分别是中角A、B、C的对边,,,D是边BA延长线上的点,且AD. (Ⅰ)求的值; (Ⅱ)求的大小.