已知圆的方程为,过点作直线与圆交于、两点。(1)若坐标原点O到直线AB的距离为,求直线AB的方程;(2)当△的面积最大时,求直线AB的斜率;(3)如图所示过点作两条直线与圆O分别交于R、S,若,且两角均为正角,试问直线RS的斜率是否为定值,并说明理由。
已知数列满足,若为等比数列,且. (1)求; (2)设,求数列的前n项和.
在△ABC中,角所对的边分别为a,b,c, (1)求角A; (2)若2sinC="3sinB," △ABC的面积,求a.
各项为正的数列满足,, (1)取,求证:数列是等比数列,并求其公比; (2)取时令,记数列的前项和为,数列的前项之积为,求证:对任 意正整数,为定值.
函数, (1)若时,求的最大值; (2)设时,若对任意,都有恒成立,且的最大值为2,求的表达式.
已知椭圆,离心率,且过点, (1)求椭圆方程; (2)以为直角顶点,边与椭圆交于两点,求面积的最大值.