已知圆的方程为,过点作直线与圆交于、两点。(1)若坐标原点O到直线AB的距离为,求直线AB的方程;(2)当△的面积最大时,求直线AB的斜率;(3)如图所示过点作两条直线与圆O分别交于R、S,若,且两角均为正角,试问直线RS的斜率是否为定值,并说明理由。
设双曲线的两个焦点分别为,离心率为. (I)求此双曲线的渐近线的方程; (II)若分别为上的点,且,求线段的中点的轨迹方程,并说明轨迹是什么曲线.
如图,已知正三角形底面,其中 且, (I)求证:平面 (II)求四棱锥的体积 (III)求与底面所成角的余弦值(文科) 求二面角的余弦值(理科)
、已知直线与曲线相交于两点,若,求的值.
(I)若椭圆的焦点为,且经过点,求椭圆的标准方程. (II)求过点的双曲线的标准方程.
(本小题满分10分) 已知函数,设关于的方程的两实数根为,的两实根为、,且. (1)若均为负整数,求解析式; (2)若,求的取值范围.