设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分. (1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和.,求ξ分布列; (2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若Eη=53,Dη=59,求a:b:c.
斜三棱柱ABC—A′B′C′的底面是正三角形,且C′B=C′C. (1)证明:AC′⊥BC; (2)若侧面BCC′B′垂直于底面,侧棱长为3,底棱长为2,求两底面间的距离.
求证:如果一个平面经过一条线段的中点,那么这条线段的两个端点到平面的距离相等.
已知二面角A-BC-D等于30°,△ABC是等边三角形,其外接圆半径为a,点D在平面ABC上射影是△ABC的中心O,求S△DBC.
等边ABC的A∈平面α,B、C到面α的距离分别为2a、a,且AB=BC=AC=b. (1)求面ABC与α所成二面角的大小; (2)若B、C到α的距离分别为3a、a呢?
已知直角梯形ABCD中,AD∥BC,AB⊥AD,∠C=45°,AD=AB=2,把梯形沿BD折起成60°的二面角C′-BD-A.求: (1)C′到平面ADB的距离; (2)AC′与BD所成的角.