如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线ll与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记λ=πn,∆BDM和∆ABN的面积分别为S1和S2. (1)当直线l与y轴重合时,若S1=λS2,求λ的值; (2)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.
(本小题满分12分)设数列满足。 (Ⅰ)求数列的通项公式; (Ⅱ)令,求数列的前项和
(本小题满分12分) 某房地产开发商投资81万元建一座写字楼,第一年装修费为1万元,以后每年增加2万元,把写字楼出租,每年收入租金30万元. (Ⅰ)若扣除投资和各种装修费,则从第几年开始获取纯利润? (Ⅱ)若干年后开发商为了投资其他项目,有两种处理方案:①年平均利润最大时以46万元出售该楼; ②纯利润总和最大时,以10万元出售该楼,问哪种方案盈利更多?
(本小题满分12分)的面积是30,内角所对边长分别为,。 (Ⅰ)求; (Ⅱ)若,求的值。