在平面直角坐标系xOy中,已知椭圆C1:x2a2+y2b2=1a>b>0的左焦点为F1-1,0,且点P0,1在C1上。 (1)求椭圆C1的方程; (2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.
设a,b均为正数,且a≠b,求证:a3+b3>a2b+ab2.
(本小题满分10分)在直角坐标平面内,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是,直线的参数方程是(为参数)。(1) 求极点在直线上的射影点的极坐标;(2) 若、分别为曲线、直线上的动点,求的最小值。
(本小题满分10分)从⊙外一点引圆的两条切线,及一条割线,、为切点.求证:.
(本小题满分12分)已知函数,。(1)求的单调区间;(2)求证:当时,;(3)求证:恒成立。
(本小题满分12分)设向量,点为动点,已知。(1)求点的轨迹方程;(2)设点的轨迹与轴负半轴交于点,过点的直线交点的轨迹于、两点,试推断的面积是否存在最大值?若存在,求其最大值;若不存在,请说明理由。