已知,点依次满足。(1)求点的轨迹;(2)过点作直线交以为焦点的椭圆于两点,线段的中点到轴的距离为,且直线与点的轨迹相切,求该椭圆的方程;(3)在(2)的条件下,设点的坐标为,是否存在椭圆上的点及以为圆心的一个圆,使得该圆与直线都相切,如存在,求出点坐标及圆的方程,如不存在,请说明理由.
(本小题满分12分) 已知关于x的二次函数. (I)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数在区间上是增函数的概率; (II)设点(a,b)是区域内的一点,求函数在区间上是增函数的概率.
本小题满分12分) 已知三棱锥PABC中,PA⊥平面ABC,AB⊥AC,PA=AC=AB, N为AB上一点,AB=4AN,M,S分别为PB,BC的中点. (I)证明:CM⊥SN;(II)求SN与平面CMN所成角的大小.
(本小题满分12分) 已知函数,且对于任意实数,恒有. (1)求函数的解析式; (2)函数有几个零点?
(本小题满分12分) 设函数. (1)求函数的单调递增区间; (2)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.
(本小题满分12分) 已知向量,,,且、、分别为的三边、、所对的角。 (1)求角C的大小; (2)若,,成等差数列,且,求边的长。