如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在弧AB上,且OM∥AC.(1)求证:平面MOE∥平面PAC.(2)求证:平面PAC⊥平面PCB.(3)设二面角M—BP—C的大小为θ,求cos θ的值.
【改编】已知函数,.(1)求函数的周期及单调递减区间;(2)在中,内角所对边的长分别是,若,求b.
(本小题满分14分)已知函数,曲线在点处的切线方程为.(Ⅰ)求函数的最小值;(Ⅱ)当时,恒成立,求的取值范围.
(本小题满分13分)已知椭圆的离心率为,直线经过椭圆的上顶点和右顶点,并且和圆相切.(Ⅰ)求椭圆的方程;(Ⅱ)设直线()与椭圆相交于、两点,以线段、为邻边作平行四边形,其中顶点在椭圆上,(其中为坐标原点),求的取值范围.
2016年敦奥运会的圣火将点燃各国体运健儿的拼搏激情,我国跳水健儿为积极准备奥运会,在著名的海滨城市青岛举行了一场奥运选拔赛,其中两位甲、乙运动员为争夺最后一个参赛名额进行七轮激烈地争夺,甲、乙两名选手七轮比赛的得分如图所示,现从两名运动员每轮得分中不低于80,不高于90的得分中任选,(Ⅰ)若任选3个,求甲的三个得分与其每轮平均得分的差的绝对值都不超过2分的概率.(Ⅱ)若任选1个,求甲乙两位运动员得分之差的绝对值的分布列及其期望.
(本小题满分12分)如图四棱锥中,底面是矩形,其中,,侧面是等边三角形,且与底面垂直,为的中点.(Ⅰ)求证:面;(Ⅱ)求二面角的余弦值.