在等腰直角△ABC中,∠BAC=90°,AB=AC,(1)如图1,点D、E分别是AB、AC边的中点,AF⊥BE交BC于点F,连结EF、CD交于点H.求证,EF⊥CD;(2)如图2,AD=AE,AF⊥BE于点G交BC于点F,过F作FP⊥CD交BE的延长线于点P,试探究线段BP,FP,AF之间的数量关系,并说明理由.图1 图2
请将下列代数式进行分类(至少三种以上)
(本小题满分12分) 如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G。 (1)点C、D的坐标分别是C( ),D( ); (2)求顶点在直线y=上且经过点C、D的抛物 线的解析式; (3)将(2)中的抛物线沿直线y=平移,平移后 的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧)。 平移后是否存在这样的抛物线,使⊿EFG为等腰三角形? 若存在,请求出此时抛物线的解析式;若不存在,请说 明理由。
(本小题满分10分) 某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润: 方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个; 方案二:售价不变,但发资料做广告。已知这种商品每月的广告费用m(千元)与销售量倍数p关系为p = ; 试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!
(本小题满分10分) 如图,点P、Q分别是边长为4cm的等边∆ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s, (1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数; (2)何时∆PBQ是直角三角形? (3)如图,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;
(本小题满分8分) 学生小明、小华到某电脑销售公司参加社会实践活动,了解到2010年该公司经销的甲、己两种品牌电脑在第一季度三个月(即一、二、三月份)的销售数量情况.小明用直方图表示甲品牌电脑在第一季度每个月的销售量的分布情况,见图;小华用扇形统计图表示乙品牌电脑每个月的销售量与该品牌电脑在第一季度的销售总量的比例分布情况,见图. 根据上述信息,回答下列问题: (1)这三个月中,甲品牌电脑在哪个月的销售量最大? ▲ 月份; (2)已知该公司这三个月中销售乙品牌电脑的总数量比销售甲品牌电脑的总数量多50台,求乙品牌电脑在二月份共销售了多少台? (3)若乙品牌电脑一月份比甲品牌电脑一月份多销售42台,那么三月份乙品牌电脑比甲品牌电脑多销售(少销售)多少台?