下图是某市3月1日至14日空气质量指数趋势图,空气质量指数小于1 00表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1曰至3月1 3日中某一天到达该市,并停留2天.(l)求此人到达当日空气重度污染的概率;(2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望。
已知 (1)若的夹角为45°,求; (2)若,求与的夹角.
如图,设、是平面内相交成角的两条数轴,、分别是与轴、轴正方向同向的单位向量。若向量,则把有序实数对叫做向量在坐标系中的坐标。若,则=
已知三次函数为奇函数,且在点的切线方程为 (1)求函数的表达式; (2)已知数列的各项都是正数,且对于,都有,求数列的首项和通项公式; (3)在(2)的条件下,若数列满足,求数列的最小值.
已知椭圆C:(a>b>0),则称以原点为圆心,r=的圆为椭圆C的“知己圆”。 (Ⅰ)若椭圆过点(0,1),离心率e=;求椭圆C方程及其“知己圆”的方程; (Ⅱ)在(Ⅰ)的前提下,若过点(0,m)且斜率为1的直线截其“知己圆”的弦长为2,求m的值; (Ⅲ)讨论椭圆C及其“知己圆”的位置关系.
2013年某工厂生产某种产品,每日的成本(单位:万元)与日产量(单位:吨)满足函数关系式,每日的销售额(单位:万元)与日产量的函数关系式 已知每日的利润,且当时,. (1)求的值; (2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.