某学校为了解高三年级学生寒假期间的学习情况,抽取甲、乙两班,调查这两个班的学生在寒假期间每天平均学习的时间(单位:小时),统计结果绘成频率分布直方图(如图).已知甲、乙两班学生人数相同,甲班学生每天平均学习时间在区间的有8人.(1)求直方图中的值及甲班学生每天平均学习时间在区间的人数;(2)从甲、乙两个班每天平均学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为,求的分布列和数学期望.
设,(1)分别求;(2)然后归纳猜想一般性结论,并给出证明.
已知复数,求a分别为何值时, (1)z是实数;(2)z是纯虚数;(3)当时,求Z的共轭复数.
若, (1)当=1时,求 (2)若,求的取值范围.
如下图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点. (1)求证:AC⊥BC1; (2)求证:AC1∥平面CDB1; (3)求异面直线AC1与B1C所成角的余弦值.
如图所示,已知在圆锥SO中,底面半径r=1,母线长l=4,M为母线SA上的一个点,且SM=x,从点M拉一根绳子,围绕圆锥侧面转到点A,求: (1)设f(x)为绳子最短长度的平方,求f(x)表达式; (2)绳子最短时,顶点到绳子的最短距离; (3)f(x)的最大值.