如图,已知四棱锥,底面为菱形,平面,,分别是的中点.(1)证明:;(2)若为上的动点,与平面所成最大角的正切值为,求二面角的余弦值.
已知函数.(1)求函数的最小正周期和值域;(2)若为第二象限角,且,求的值.
已知函数(Ⅰ)若函数在[1,2]上是减函数,求实数a的取值范围;(Ⅱ)令是否存在实数a,当(e是自然常数)时,函数 的最小值是3,若存在,求出a的值;若不存在,说明理由;(Ⅲ)当时,证明:
设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且.(Ⅰ)求椭圆的离心率;(Ⅱ)D是过三点的圆上的点,D到直线的最大距离等于椭圆长轴的长,求椭圆的方程;(Ⅲ)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由.
已知四棱锥底面ABCD是矩形,PA⊥平面ABCD,AD=2,AB=1,E.F分别是线段AB,BC的中点,(Ⅰ)证明:PF⊥FD;(Ⅱ)在PA上找一点G,使得EG∥平面PFD;.(Ⅲ)若与平面所成的角为,求二面角的余弦值.
某机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利额为y万元.(Ⅰ)写出y与x之间的函数关系式;(Ⅱ)从第几年开始,该机床开始盈利(盈利额为正值)