设函数.(1)求的单调区间和极值;(2)若关于的方程有3个不同实根,求实数a的取值范围.
设向量,定义一种向量积. 已知向量,,点为的图象上的动点,点为的图象上的动点,且满足(其中为坐标原点). (1)请用表示; (2)求的表达式并求它的周期; (3)把函数图象上各点的横坐标缩小为原来的倍(纵坐标不变),得到函数的图象.设函数,试讨论函数在区间内的零点个数.
将形如的符号称二阶行列式,现规定, 函数=在一个周期内的图象如图所示,为图象的最高点,、为图象与轴的交点,且为正三角形。 (1)求的值及函数的单调递增区间; (2)若,在上恒成立,求的取值范围.
设=(5,1),=(1,7),=(4,2),且. (1)是否存在实数,使?若存在,求出实数;若不存在,请说明理由; (2)求使取最小值点M的坐标.
已知函数. (1)把的解析式Acos()+B的形式,并用五点法作出在一个周期上的简图;(要求列表) (2)说出的图像经过怎样的变换的图像.
设向量满足||=||=1,且|2-|=. (1)求的值; (2)求与夹角.