设函数.(1)求的单调区间和极值;(2)若关于的方程有3个不同实根,求实数a的取值范围.
如图所示,四边形ABCD为直角梯形,,,为等边三角形,且平面平面ABE,,P为CE中点.(1)求证:;(2)求三棱锥D-ABP的体积.
设数列的前n项和为,为等比数列,且,.(1)求数列,的通项公式;(2)设,求数列的前n项和.
设函数.(1)解不等式;(2)当时,证明:.
已知直线(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为,直线与曲线C的交点为A、B,求的值.
如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且.(1)证明:;(2)延长CD到F,延长DC到G,使得,证明:A,B,G,F四点共圆.