已知圆O的内接△ABC中,D为BC上一点,且△ADC为正三角形,点E为BC的延长线上一点,AE为圆O的切线,求证:CD2=BD·EC.
已知p:|x-3|≤2,q:(x-m+1)(x-m-1)≤0,若﹁p是﹁q的充分而不必要条件,求实数m的取值范围.
用秦九韶算法求多项式,当x=2时的值.
过曲线上的一点作曲线的切线,交x轴于点P1,过P1作垂直于x轴的直线交曲线于Q1,过Q1作曲线的切线,交x轴于点P2;过P2作垂直于x轴的直线交曲线于Q2,过Q2作曲线的切线,交x轴于点P3;……如此继续下去得到点列:设的横坐标为 (I)试用n表示; (II)证明: (III)证明:
已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线是抛物线的一条切线. (Ⅰ)求椭圆的方程; (Ⅱ)过点的动直线L交椭圆C于 A.B两点.问:是否存在一个定点T,使得以AB为直径的圆恒过点T ? 若存在,求点T坐标;若不存在,说明理由.
已知曲线在点处的切线斜率为 (Ⅰ)求的极值; (Ⅱ)设在(一∞,1)上是增函数,求实数的取值范围