省《体育高考方案》于2012年2月份公布,方案要求以学校为单位进行体育测试,某校对高三1班同学按照高考测试项目按百分制进行了预备测试,并对50分以上的成绩进行统计,其频率分布直方图如图所示,若90~100分数段的人数为2人. (Ⅰ) 请估计一下这组数据的平均数M;(Ⅱ) 现根据初赛成绩从第一组和第五组(从低分段到高分段依次为第一组、第二组、…、第五组)中任意选出两人,形成一个小组.若选出的两人成绩差大于20,则称这两人为“帮扶组”,试求选出的两人为“帮扶组”的概率.
如图,在几何体ABCDE中,AB=AD=2,AB⊥AD,AE⊥平面ABD,M为线段BD的中点,MC∥AE,且AE=MC=. (1)求证:平面BCD⊥平面CDE; (2)若N为线段DE的中点,求证:平面AMN∥平面BEC.
已知m=(2cos x+2sin x,1),n=(cos x,-y),且m⊥n. (1)将y表示为x的函数f(x),并求f(x)的单调递增区间; (2)已知a,b,c分别为△ABC的三个内角A,B,C对应的边长,若f=3,且a=2,b+c=4,求△ABC的面积.
某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图. (1)求图中实数a的值; (2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数; (3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.
已知数列{an}的相邻两项an,an+1是关于x的方程x2-2nx+bn=0的两根,且a1=1. (1)求证:数列是等比数列; (2)求数列{an}的前n项和Sn; (3)设函数f(n)=bn-t·Sn(n∈N*),若f(n)>0对任意的n∈N*都成立,求t的取值范围.
在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC的中点,又∠CAD=30°,PA=AB=4,点N在线段PB上,且=. (1)求证:BD⊥PC; (2)求证:MN∥平面PDC; (3)设平面PAB∩平面PCD=l,试问直线l是否与直线CD平行,请说明理由.