设函数对任意,都有,当时, (1)求证:是奇函数;(2)试问:在时 ,是否有最大值?如果有,求出最大值,如果没有,说明理由.(3)解关于x的不等式
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为。 (1)求双曲线C的方程; (2)若直线l:与双曲线C恒有两个不同的交点A和B,且(其中O为原点),求k的取值范围。
已知椭圆中心在原点,以坐标轴为对称轴且经过两点,求椭圆的方程。
已知两条直线;。 (1)为何值时与平行; (2)为何值时。
成等差数列的四个数的和为,第二数与第三数之积为,求这四个数。
求符合下列条件的椭圆标准方程: (1)焦距为8,离心率为0.8 ; (2)焦点与长轴较接近的端点的距离为,焦点与短轴两端点的连线互相垂直。