已知函数有最大值,试求实数的值。
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动. (1)证明:D1E⊥A1D; (2)当E为AB的中点时,求点E到面ACD1的距离; (3)AE等于何值时,二面角D1-EC-D的大小为.
如图,在三棱锥中,平面平面,为等边三角形,,且,O,M分别为,的中点. (Ⅰ)求证:平面; (Ⅱ)设是线段上一点,满足平面平面,试说明点的位置; (Ⅲ)求三棱锥的体积.
如图,在四棱锥中,平面,底面是菱形,AB=2,. (Ⅰ)求证:平面PAC; (Ⅱ)若,求与所成角的余弦值;
圆满足: ①圆心在射线上; ②与轴相切; ③被直线截得的线段长为 (1)求圆的方程; (2)过直线上一点P作圆的切线,设切点为E、F,求四边形面积的最小值,并求此时的值.
已知函数 (1)若为奇函数,求实数的值; (2)当时,求函数在上的值域; (3)若对恒成立,求实数的取值范围.