(本小题共13分)在△ABC中,a,b,c分别为内角A,B,C的对边,且b2+c2-a2=bc.(Ⅰ)求角A的大小;(Ⅱ)设函数,当取最大值时,判断△ABC的形状.
已知椭圆的标准方程为,过点的双曲线的实轴的两端点恰好是椭圆的两焦点,求双曲线的标准方程.
((本小题满分14分) 已知函数. (I)当时,求函数的单调区间; (II)若函数在区间上无极值,求的取值范围; (III)已知且,求证:.
(本小题满分12分) 已知直线过抛物线的焦点且与抛物线相交于两点,自向准线作垂线,垂足分别为. (Ⅰ)求抛物线的方程; (Ⅱ)证明:无论取何实数时,,都是定值; (III)记的面积分别为,试判断是否成立,并证明你的结论.
(本小题满分12分) 四棱锥中,侧棱,底面是直角梯形,,且,是的中点. (I)求异面直线与所成的角; (II)线段上是否存在一点,使得?若存在,求出的值;若不存在,请说明理由.
(本小题满分12分) 已知函数. (Ⅰ)求函数的图象在点处的切线的方程; (Ⅱ)求函数区间上的最值.