(本小题共13分)在△ABC中,a,b,c分别为内角A,B,C的对边,且b2+c2-a2=bc.(Ⅰ)求角A的大小;(Ⅱ)设函数,当取最大值时,判断△ABC的形状.
附加题(本大题共两个小题,每个小题10分,满分 20分,省级示范性高中要把该题成绩计入总分,普通高中学生选作)已知,(1)判断函数在区间(-∞,0)上的单调性,并用定义证明;(2)画出该函数在定义域上的图像.(图像体现出函数性质即可)
(本题满分10分)某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每月需维护费150元,未租出的车每月需维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益为多少?
(本题满分10分)画出函数的图像,并写出该函数的单调区间与值域.
(本题满分10分)已知集合。(1)求;(2)求;(3)若,求a的取值范围.
(本题满分10分)化简或求值: (1); (2).