(本小题满分12分)为了保护环境,实现城市绿化,某房地产公司要在拆迁地长方形上规划出一块长方形地面建造公园,公园一边落在CD 上,但不得越过文物保护区的EF.问如何设才能使公园占地面积最大,并求这最大面积( 其中AB="200" m,BC="160" m,AE="60" m,AF="40" m.)
在平面直角坐标系中,已知曲线: ,在极坐标系(与平面直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,直线的极坐标方程为.(1)将曲线上的所有点的横坐标、纵坐标分别伸长为原来的倍、倍后得到曲线,试写出直线的直角坐标方程和曲线的参数方程;(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.
如图,圆的直径,是延长线上一点,,割线交圆于点,,过点作的垂线,交直线于点,交直线于点.(1)求证:;(2)求的值.
已知函数= (,(1)当时,判断函数在定义域上的单调性;(2)若函数与的图像有两个不同的交点,求的取值范围。(3)设点和(是函数图像上的两点,平行于的切线以为切点,求证.
已知抛物线方程为,过点作直线与抛物线交于两点,,过分别作抛物线的切线,两切线的交点为.(1)求的值;(2)求点的纵坐标;(3)求△面积的最小值.
如图,斜三棱柱的底面是直角三角形,,点在底面内的射影恰好是的中点,且(1)求证:平面平面;(2)若,求点到平面的距离.