(本小题满分12分)为了保护环境,实现城市绿化,某房地产公司要在拆迁地长方形上规划出一块长方形地面建造公园,公园一边落在CD 上,但不得越过文物保护区的EF.问如何设才能使公园占地面积最大,并求这最大面积( 其中AB="200" m,BC="160" m,AE="60" m,AF="40" m.)
在平面直角坐标系中,已知圆:和点,过点的直线交圆于两点. (1)若,求直线的方程; (2)设弦的中点为,求点的轨迹方程.
已知一几何体如图所示,正方形和梯形所在平面互相垂直,,,,,. (Ⅰ)求证:平面; (Ⅱ)求该几何体的体积.
直线l过点P(0,2)且与椭圆相交于M,N两点,求面积的最大值.
椭圆E:内有一点P(2,1),求经过P并且以P为中点的弦所在直线方程.
已知函数. (1)若函数在处的切线方程为,求的值; (2)讨论方程解的个数,并说明理由.