在平面直角坐标系中,已知曲线: ,在极坐标系(与平面直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,直线的极坐标方程为.(1)将曲线上的所有点的横坐标、纵坐标分别伸长为原来的倍、倍后得到曲线,试写出直线的直角坐标方程和曲线的参数方程;(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.
有4个不同的球,四个不同的盒子,把球全部放入盒内.(1)共有多少种放法?(2)恰有一个盒子不放球,有多少种放法?(3)恰有一个盒内放2个球,有多少种放法?(4)恰有两个盒不放球,有多少种放法?
(本小题满分14分)已知函数.(I) 若且函数为奇函数,求实数;(II) 若试判断函数的单调性;(III) 当,,时,求函数的对称轴或对称中心.
(本小题满分12分)设椭圆:的焦点分别为、,抛物线:的准线与轴的交点为,且.(I)求的值及椭圆的方程;(II)过、分别作互相垂直的两直线与椭圆分别交于、、、四点(如图),求四边形面积的最大值和最小值.
本小题满分12分)已知数列满足+=4n-3(n∈).(I)若=2,求数列的前n项和;(II)若对任意n∈,都有≥5成立,求为偶数时,的取值范围.
(本小题满分12分)张先生家住H小区,他工作在C科技园区,从家开车到公司上班路上有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1,B2两个路口,各路口遇到红灯的概率依次为,.(Ⅰ)若走L1路线,求最多遇到1次红灯的概率;(Ⅱ)若走L2路线,求遇到红灯次数的数学期望;(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助张先生分析上述两条路线中,选择哪条上班路线更好些,并说明理由.