(本小题满分8分)一个盒子中装有张卡片,每张卡片上编有一个数字,分别是 1,2,3,4,5现从盒子中随机抽取卡片(1)若一次抽取张卡片,求所抽取的三张卡片的数字之和大于的概率(2)若从编号为1、2、3、4的卡片中抽取,第一次抽一张卡片,放回后再抽取一张卡片,求两次抽取至少一次抽到数字的卡片的概率.
已知关于x的函数f(x)=-+bx2+cx+bc,其导函数为.令g(x)=∣∣,记函数g(x)在区间[-1、1]上的最大值为M. (Ⅰ)如果函数f(x)在x=1处有极值-,试确定b、c的值: (Ⅱ)若∣b∣>1,证明对任意的c,都有M>2: (Ⅲ)若M≥K对任意的b、c恒成立,试求k的最大值
已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为4 (Ⅰ)求椭圆的方程; (Ⅱ)直线过点P(0,2)且与椭圆相交于A、B两点,当ΔAOB面积取得最大值时,求直线l的方程.
已知单调递增的等比数列满足:,且是和的等差中项. (1) 求数列的通项公式; (2) 令,,求使成立的最小的正整数.
圆C与y轴相切,圆心在射线 x-3y=0(x>0)上,且圆C截直线y=x所得弦长为. (1)求圆C的方程。(2)点P(x,y)是圆C上的动点,求x+y的最大值。(3)求过点M(2,1)的圆的弦的中点轨迹方程。
甲、乙、丙三人组成一组,参加一个闯关游戏团体赛。三人各自独立闯关,其中甲闯关成功的概率为,甲、乙都闯关成功的概率为,乙、丙都闯关成功的概率为。每人闯关成功记2分,三人得分之和记为小组团体总分。 (1)求乙、丙各自闯关成功的概率; (2)求团体总分为4分的概率; (3)若团体总分不小于4分,则小组可参加复赛,求该小组参加复赛的概率。