已知函数.(1)当且时,证明:;(2)若对,恒成立,求实数的取值范围;(3)当时,证明:.
(本小题满分12分)已知函数.(Ⅰ)讨论函数在定义域内的极值点的个数;(Ⅱ)若函数在处取得极值,对恒成立,求实数的取值范围.
(本小题满分12分)已知:,证明:
(本小题满分12分)设某物体一天中的温度是时间的函数:,其中温度的单位是,时间单位是小时,表示12:00,取正值表示12:00以后.若测得该物体在8:00的温度是,12:00的温度为,13:00的温度为,且已知该物体的温度在8:00和16:00有相同的变化率.(1)写出该物体的温度关于时间的函数关系式;(2)该物体在10:00到14:00这段时间中(包括10:00和14:00),何时温度最高,并求出最高温度;(3)如果规定一个函数在区间上的平均值为,求该物体在8:00到16:00这段时间内的平均温度.
已知函数的图象过点,且在点处的切线方程为.(Ⅰ)求函数的解析式;(Ⅱ)求函数的单调区间.
(本小题满分12分)曲线C:,过点的切线方程为,且交于曲线两点,求切线与C围成的图形的面积。