已知函数的图象过点.(1)求实数的值; (2)求函数的最小正周期及最大值.
已知数列满足:,且,. (1)求通项公式; (2)求数列的前n项的和
在直三棱柱中,AA1=AB=BC=3,AC=2,D是AC的中点. (1)求证:B1C∥平面A1BD; (2)求平面A1DB与平面DBB1夹角的余弦值.
甲、乙两名教师进行乒乓球比赛,采用七局四胜制(先胜四局者获胜).若每一局比赛甲获胜的概率为,乙获胜的概率为,现已赛完两局,乙暂时以2∶0领先. (1)求甲获得这次比赛胜利的概率; (2)设比赛结束时比赛的局数为随机变量X,求随机变量X的概率分布和数学期望EX.
已知函数 (1)求函数的最小正周期及单调递增区间; (2)在中,A、B、C分别为三边所对的角,若,求的最大值.
已知函数f(x)=xln x,g(x)=x3+ax2-x+2. (1)求函数f(x)的单调区间; (2)对一切x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.