已知函数.(1)试判断函数的单调性;(2)设,求在上的最大值;(3)试证明:对任意,不等式都成立(其中是自然对数的底数).
设. (Ⅰ)确定的值,使的极小值为0; (II)证明:当且仅当时,的极大值为3.
某校有一贫困学生因病需手术治疗,但现在还差手术费万元,团委计划在全校开展爱心募捐活动,为了增加活动的趣味性吸引更多学生参与,特举办“摇奖100%中奖”活动.凡捐款10元者,享受一次摇奖机会,如图是摇奖机的结构示意图,摇奖机的旋转盘是均匀的,扇形区域所对应的圆心角的比值分别为1:2:3:4:5.相应区域分别设立一、二、三、四、五等奖,奖品分别为价值分别为5元、4元、3元、2元、1元的学习用品.摇奖时,转动圆盘片刻,待停止后,固定指针指向哪个区域(边线忽略不计)即可获得相应价值的学习用品(如图指针指向区域,可获得价值3元的学习用品). (Ⅰ)预计全校捐款10元者将会达到1500人次,那么除去购买学习用品的款项后,剩余款项是否能帮助该生完成手术治疗? (II)如果学生甲捐款20元,获得了两次摇奖机会,求他获得价值6元的学习用品的概率.
用平行于棱锥底面的平面去截棱锥,则截面与底面之间的部分叫棱台.如图,在四棱台中,下底是边长为的正方形,上底是边长为1的正方形,侧棱⊥平面,. (Ⅰ)求证:平面; (II)求平面与平面夹角的余弦值.
已知中,角、、的对边分别为、、,角不是最大角,,外接圆的圆心为,半径为. (Ⅰ)求的值; (Ⅱ)若,求的周长
已知数列满足,,等比数列的首项为2,公比为. (Ⅰ)若,问等于数列中的第几项? (Ⅱ)数列和的前项和分别记为和,的最大值为,当时,试比较与的大小