已知椭圆的左焦点为,左、右顶点分别为,过点且倾斜角为的直线交椭圆于两点,椭圆的离心率为,.(1)求椭圆的方程;(2)若是椭圆上不同两点,轴,圆过点,且椭圆上任意一点都不在圆内,则称圆为该椭圆的内切圆.问椭圆是否存在过点的内切圆?若存在,求出点的坐标;若不存在,说明理由.
(本小题满分10分)选修4-5:不等式选讲 (Ⅰ)已知都是正实数,求证:; (Ⅱ)已知都是正实数,求证:.
(本小题满分10分)选修4-4:坐标系与参数方程 在平面直角坐标系xOy中,已知曲线,将上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线. 以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线. (Ⅰ)试写出直线的直角坐标方程和曲线的参数方程; (Ⅱ)在曲线上求一点P,使点P到直线的距离最大,并求出此最大值.
(本小题满分10分)选修4-1:几何证明选讲 如图所示,AB是⊙O的直径, G为AB延长线上的一点,GCD是⊙O的割线,过点 G作AB的垂线,交AC的延长线于点E,交AD的延 长线于点F,过G作⊙O的切线,切点为H . 求证:(Ⅰ)C,D,F,E四点共圆; (Ⅱ)GH2=GE·GF.
(本小题满分12分)已知函数. (Ⅰ)求的最小值; (Ⅱ)若对所有都有,求实数的取值范围.
(本小题满分12分)一动圆与已知:相外切,与:相内切. (Ⅰ)求动圆圆心的轨迹C; (Ⅱ)若A(0,1),轨迹C与直线y="kx+m" (k≠0)相交于不同的两点M、N,当||=||时,求m的取值范围.