已知椭圆的左焦点为,左、右顶点分别为,过点且倾斜角为的直线交椭圆于两点,椭圆的离心率为,.(1)求椭圆的方程;(2)若是椭圆上不同两点,轴,圆过点,且椭圆上任意一点都不在圆内,则称圆为该椭圆的内切圆.问椭圆是否存在过点的内切圆?若存在,求出点的坐标;若不存在,说明理由.
如果实数x、y满足x+y-4x+1=0,求的最大值与最小值。
如果直线l将圆平分,且不通过第四象限,求l的斜率的取值范围。
已知圆方程,过点A(2,3)作圆的任意弦,求这些弦的中点P的轨迹方程。
过圆外一点p(2,1)引圆的切线,求切线方程。
两平行直线L1,L2分别过A(1,0) 与 B(0,5)点,若L1与L2之间的距离为5,求这两直线的方程