.如图,ABCD-A1B1C1D1是棱长为的正方体,M,N,P,Q,R,S分别是AA1,AB,AD,CC1,B1C1,C1D1的中点,求证:平面PMN∥平面QRS。
已知函数f(x)=,其中a>0. (1)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程; (2)若在区间上,f(x)>0恒成立,求a的取值范围.
已知椭圆C的左、右焦点坐标分别是,,离心率是,直线y=t椭圆C交与不同的两点M,N,以线段MN为直径作圆P,圆心为P. (1)求椭圆C的方程; (2)若圆P与x轴相切,求圆心P的坐标;
已知函数在处取得极值。 (1)讨论和是函数的极大值还是极小值; (2)过点作曲线的切线,求此切线方程。
已知的图象经过点,且在处的切线方程是 (1)求的解析式; (2)求的单调递增区间
(1)已知椭圆的焦点为,点在椭圆上,求它的方程(2)已知双曲线顶点间的距离为6,渐近线方程为,求它的方程.