(本小题满分12分)已知椭圆的中心在坐标原点,焦点在轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,短轴长为2.(Ⅰ)求椭圆的方程;(Ⅱ)设直线过且与椭圆相交于A,B两点,当P是AB的中点时,求直线的方程.
已知集合,集合 (1)求集合; (2)若,求的取值范围.
本公司计划2012年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为元/分钟和200元/分钟,甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?
(本题满分14分) 设函数 ⑴当且函数在其定义域上为增函数时,求的取值范围; ⑵若函数在处取得极值,试用表示; ⑶在⑵的条件下,讨论函数的单调性。
(本题满分13分) 已知函数是上的偶函数. (1)求的值; (2)设,若函数与的图象有且只有一个公共点,求实数的取值范围.
(本题满分12分) 已知是一个公差大于的等差数列,且满足.数列,,,…,是首项为,公比为的等比数列. (1) 求数列的通项公式; (2) 若,求数列的前项和.