(本小题满分12分)已知椭圆的中心在坐标原点,焦点在轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,短轴长为2.(Ⅰ)求椭圆的方程;(Ⅱ)设直线过且与椭圆相交于A,B两点,当P是AB的中点时,求直线的方程.
本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 设函数是定义域为R的奇函数. (1)求k值; (2)(文)当时,试判断函数单调性并求不等式f(x2+2x)+f(x-4)>0的解集; (理)若f(1)<0,试判断函数单调性并求使不等式恒成立的的取值范围; (3)若f(1)=,且g(x)=a 2x+a - 2x-2m f(x) 在[1,+∞)上的最小值为-2,求m的值.
本题共有2个小题,第1小题满分8分,第2小题满分4分. 在正四棱柱中,已知底面的边长为2,点P是的中点,直线AP与平面成角. (文)(1)求的长; (2)求异面直线和AP所成角的大小.(结果用反三角函数值表示); (理)(1)求异面直线和AP所成角的大小.(结果用反三角函数值表示) ; (2)求点到平面的距离.
各项均为正数的数列的前项和为,满足. (1)求数列的通项公式; (2)若数列满足,数列满足,数列的前项和为,求; (3)若数列,甲同学利用第(2)问中的,试图确定的值是否可以等于2011?为此,他设计了一个程序(如图),但乙同学认为这个程序如果被执行会是一个“死循环”(即程序会永远循环下去,而无法结束),你是否同意乙同学的观点?请说明理由.
如图,在四棱锥中,底面是矩形.已知. (1)证明平面; (2)求异面直线与所成的角的大小; (3)求二面角的大小.
已知向量,其中且, (1)当为何值时,; (2)解关于的不等式.