如图,已知正方形的边长为,点分别在边上,,现将△沿线段折起到△位置,使得.(1)求五棱锥的体积;(2)在线段上是否存在一点,使得平面?若存在,求;若不存在,说明理由.
已知数列{an}满足:(其中常数λ>0,n∈N*).(1)求数列{an}的通项公式;(2)当λ=4时,是否存在互不相同的正整数r,s,t,使得ar,as,at成等比数列?若存在,给出r,s,t满足的条件;若不存在,说明理由;(3)设Sn为数列{an}的前n项和.若对任意n∈N*,都有(1-λ)Sn+λan≥2λn恒成立,求实数λ的取值范围.
已知函数,其中为参数,且.(1)当时,判断函数是否有极值,说明理由;(2)要使函数的极小值大于零,求参数的取值范围;(3)若对(2)中所求的取值范围内的任意参数,函数在区间内都是增函数,求实数的取值范围。
已知椭圆长轴上有一点到两个焦点之间的距离分别为:3+2,3-2(1)求椭圆的方程;(2)如果直线x=t(teR)与椭圆相交于A,B,若C(-3,0),D(3,0),证明直线CA与直线BD的交点K必在一条确定的双曲线上;(3)过点Q(1,0 )作直线l(与x轴不垂直)与椭圆交于M,N两点,与y轴交于点R,、若,求证:为定值.
如图,在四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,E是AB上一点.已知PD=,CD=4,AD=.(1)若∠ADE=,求证:CE⊥平面PDE;(2)当点A到平面PDE的距离为时,求三棱锥A-PDE的侧面积.
某校为了解学生的视力情况,随机抽查了一部分学生的视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],…,(5.1,5.4].经过数据处理,得到如下频率分布表:
(1)求频率分布表中未知量n,x,y,z的值;(2)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率.