如图,直三棱柱中, ,,是的中点,△是等腰三角形,为的中点,为上一点.(1)若∥平面,求;(2)求直线和平面所成角的余弦值.
男运动员6名,女运动员4名,其中男女队长名1人,选派5人外出比赛,在下列情形中各有多少种选派方法? (1)男运动员3名,女运动员2名 (2)至少有一名女运动员 (3)队长中至少有1人参加
某食品厂进行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工费 为元(为常数,且,设该食品厂每公斤蘑菇的出厂价为元(),根据 市场调查,销售量与成反比,当每公斤蘑菇的出厂价为30元时,日销售量为100公斤. (1)求该工厂的每日利润元与每公斤蘑菇的出厂价元的函数关系式; (2)若,当每公斤蘑菇的出厂价为多少元时,该工厂的利润最大,并求最大值
已知函数在点处取得极大值, 其导函数的图象经过点,,如图所示. 求:(1)的值;(2)的值. (3)、若曲线与有两个不同的交点, 求实数的取值范围。
(已知函数图像上的点处的切线方程为.[来 (1)若函数在时有极值,求的表达式; (2)函数在区间上单调递增,求实数的取值范围。
计算下列定积分。 (1)(2) (3)