设函数.(1)求的最小正周期。(2)若函数与的图像关于直线对称,求当时的最大值.
(本题14分)设集合,集合, (1)若,求; (2)若,求实数的取值范围.
(本题18分)已知函数, (1)画出函数图像; (2)求,的值; (3)当时,求取值的集合.
(本题18分)某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出。当每辆车的月租金每增加50元时,未租出的车将会增加一辆。租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元。 (1)当每辆车的月租金定为3600元时,能租出多少辆车? (2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
(本题17分)已知定义在上的函数是偶函数,且时,,(1)当时,求解析式;(2)写出的单调递增区间.
(本题17分)已知集合,,若,求实数的取值范围.