求数列前项和.
已知在等比数列中,,且是和的等差中项. (1)求数列的通项公式; (2)若数列满足,求的通项公式.
已知函数,其中 ,,在中,分别是角的对边,且, (1)求角;(2)若,,求的面积.
已知函数为常数, (1)当时,求函数在处的切线方程; (2)当在处取得极值时,若关于的方程在上恰有两个不相等的实数根,求实数的取值范围; (3)若对任意的,总存在,使不等式成立,求实数的取值范围。
椭圆:的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于两点,与抛物线交于两点,且。 (1)求椭圆的方程; (2)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足为坐标原点),当时,求实数的取值范围。
(本小题满分14分) 在四棱锥中,//,, ,平面,. (Ⅰ)设平面平面,求证://; (Ⅱ)求证:平面; (Ⅲ)设点为线段上一点,且直线与平面所成角的正弦值为,求的值.