用分析法证明:当x>1时,x>ln(1+x).
已知函数f(x)=sinx+cosx,f′(x)是f(x)的导函数,F(x)=f(x)f′(x)+f2(x)(Ⅰ)求F(x)的最小正周期及单调区间;(Ⅱ)求函数F(x)在上的值域;(Ⅲ)若f(x)=2f′(x),求的值.
机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利额为y万元.(Ⅰ)写出y与x之间的函数关系式;(Ⅱ)从第几年开始,该机床开始盈利(盈利额为正值);(Ⅲ)使用若干年后,对机床的处理方案有两种:(1)当年平均盈利额达到最大值时,以30万元价格处理该机床;(2)当盈利额达到最大值时,以12万元价格处理该机床.请你研究一下哪种方案处理较为合理?请说明理由.
在中,已知角的对边分别为.向量且向量与共线.(Ⅰ)求的值;(Ⅱ)若,求的面积的最大值.
已知{an}是等差数列,a1=3,Sn是其前n项和,在各项均为正数的等比数列{bn}中,b1=1,且b2+S2=10,S5 =5b3+3a2.(I )求数列{an}, {bn}的通项公式; (II)设,数列{cn}的前n项和为Tn,求证
某社区举办防控甲型H7N9流感知识有奖问答比赛,甲、乙、丙三人同时回答一道卫生知识题,三人回答正确与错误互不影响。已知甲回答这题正确的概率是,甲、丙两人都回答错误的概率是,乙、丙两人都回答正确的概率是.(I)求乙、丙两人各自回答这道题正确的概率;(II)用表示回答该题正确的人数,求的分布列和数学期望.