某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如下图.(1)求分数在的频率及全班人数;(2)求分数在之间的频数,并计算频率分布直方图中间矩形的高;(3)若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在之间的概率.
已知函数且. (Ⅰ)当时,求在点处的切线方程; (Ⅱ)若函数在区间上为单调函数,求的取值范围.
设椭圆与抛物线的焦点均在轴上,的中心及的顶点均为原点,从每条曲线上各取两点,将其坐标记录于下表:
(Ⅰ)求曲线、的标准方程; (Ⅱ)设直线过抛物线的焦点,与椭圆交于不同的两点、,当时,求直线的方程.
下表是我国2010年和2011年2~6月CPI同比(即当年某月与前一年同月相比)的增长数据,其中2011年的5个CPI数据成等差数列. (Ⅰ)求、、的值; (Ⅱ)求2011年2~6月我国CPI数据的方差; (Ⅲ)一般认为,某月CPI数据达到或超过3个百分点就已经通货膨胀,而达到或超过5个百分点为严重通货膨胀,现随机从2010年5个月和2011年5个月的数据中各抽取一个数据,求相同月份2010年通货膨胀,并且2011年严重通货膨胀的概率. 我国2010年和2011年2~6月份的CPI数据(单位:百分点,1个百分点)
如图,在四棱锥中,平面平面,,,,是中点,是中点. (Ⅰ)求证:平面; (Ⅱ)求三棱锥的体积.
已知等比数列的前项和为,,且、、成等差数列. (Ⅰ)求数列的通项公式; (Ⅱ)设数列是一个首项为,公差为的等差数列,求数列的前项和.