某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如下图.(1)求分数在的频率及全班人数;(2)求分数在之间的频数,并计算频率分布直方图中间矩形的高;(3)若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在之间的概率.
已知,椭圆C以过点A(1,),两个焦点为(-1,0)(1,0)。(1)求椭圆C的方程;(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
若实数、、满足,则称比接近. (1)若比3接近0,求的取值范围; (2)对任意两个不相等的正数、,证明:比接近; (3)已知函数的定义域.任取,等于和中接近0的那个值.写出函数的解析式及最小值(结论不要求证明)
斜率为k的直线过点P(0,1),与双曲线交于A,B两点. (1)求实数k的取值范围;(2)若以AB为直径的圆过坐标原点,求k的值.
已知函数(1)若,解不等式;(2)若解不等式
已知直线l经过点P(1,1),倾斜角.(1)写出直线l的参数方程;(2)设l与圆相交于两点A,B,求点P到A,B两点的距离之积.