已知函数在与时,都取得极值.(1)求的值;(2)若,求的单调区间和极值;(3)若对都有恒成立,求的取值范围.
已知函数f(x)=(ax-a-x) (a>0,且a≠1).(1)判断f(x)的单调性;(2)验证性质f(-x)=-f(x),当x∈(-1,1)时,并应用该性质求满足f(1-m)+f(1-m2)<0的实数m的范围.
已知函数f(x)=((1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)证明:f(x)>0.
要使函数y=1+2x+4xa在x∈(-∞,1]上y>0恒成立,求a的取值范围.
求下列函数的单调递增区间:(1)y=(;(2)y=2.
已知a=,b=9.求:(1)(2).