某单位从一所学校招收某类特殊人才.对位已经选拔入围的学生进行运动协调能力和逻辑思维能力的测试,其测试结果如下表:例如表中运动协调能力良好且逻辑思维能力一般的学生是人.由于部分数据丢失,只知道从这位参加测试的学生中随机抽取一位,抽到逻辑思维能力优秀的学生的概率为.(1)求,的值;(2)从运动协调能力为优秀的学生中任意抽取位,求其中至少有一位逻辑思维能力优秀的学生的概率.
已知函数. (Ⅰ)请写出函数在每段区间上的解析式,并在图中的直角坐标系中作出函数的图象; (II)若不等式对任意的实数恒成立,求实数的取值范围.
已知在直角坐标系中,曲线的参数方程为:(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,直线的极坐标方程为:. (Ⅰ)写出曲线和直线在直角坐标系下的方程; (II)设点是曲线上的一个动点,求它到直线的距离的最小值.
如图,是圆的内接四边形,,过点的圆的切线与的延长线交于点,证明: (Ⅰ) (II)
已知函数 (I)求函数的最小值; (II)对于函数和定义域内的任意实数,若存在常数,使得不等式和都成立,则称直线是函数和的“分界线”. 设函数,,试问函数和是否存在“分界线”?若存在,求出“分界线”的方程.若不存在请说明理由.
动点与定点的距离和它到直线的距离之比是常数,记点的轨迹为曲线. (I)求曲线的方程; (II)设直线与曲线交于两点,为坐标原点,求面积的最大值.